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a b s t r a c t

Model of a power curve allows to analyze performance of a wind turbine and compare it with other
turbines. An approach based on centers of data partitions and data mining is proposed to construct such
a model. Wind speed range is partitioned into intervals for which centers are computed. The centers are
regarded as representative samples in modeling. A support vector machine algorithm is used to build a
power curve model. Computational results have demonstrated that the model reflects dynamic prop-
erties of a power curve. In addition it is accurate and efficient to generate. The model accuracy has been
tested with industrial wind energy data.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Environmental concerns and a limited supply of fossil fuels have
caused countries to pay attention to renewable energy. Wind en-
ergy is expanding at the fastest rate among all alternative forms of
energy generation [1]. However, the large scale deployment of wind
energy has brought challenges to performance assessment of wind
turbines [2]. Fluctuating wind speed and power make it difficult to
assess efficiency of a turbine. A turbine with a deteriorating per-
formance may be prone to failures, including catastrophic failures.
An early maintenance interventionmay bewarranted. The research
presented in this paper offers a solution to performance evaluation
of wind turbines.

Numerous approaches have been applied tomodel wind turbine
power curves (WTPCs). The models presented in the literature are
usually parametric or non-parametric [3]. Examples of parametric
models include [4]: the piecewise linear model, polynomial power
curve, maximum principle method, and dynamical power curve. In
the piecewise linear model, the lines represent the data fitted ac-
cording to the least square criterion [5,6]. More accurate WTPCs
were modeled with polynomial equations, ranging from quadratic
ang), andrew-kusiak@uiowa.
power curve models [7], to cubic and approximate cubic [3],
exponential [7], and ninth degree polynomial models [8]. The
maximum principle method was proposed in Ref. [9] to build a
dynamic empirical power curve model. The main idea behind the
dynamic power curve is to partition the wind power output into
deterministic and stochastic components, for example the Langevin
model was used in Ref. [9]. There are also probabilistic models, for
example, the power curve model in Ref. [10] considered the dy-
namics and uncertainty of wind power generation. Logistic func-
tion models with four and five parameters were developed in
Ref. [11].

Non-parametric models do not involve equations [4]. Examples
of non-parametric models include, copula power curve model,
cubic spline interpolation, neural network (NN), fuzzy models, and
data derived models. Copula is a distribution function utilized to
analyze dependence of random variables. The copula model in
Ref. [12] considered the wind power curve as a bivariate joint dis-
tribution. Interpolation methods, generally used to determine
values between two known data points, were utilized to model
power curves. The cubic spline interpolation was successfully
applied to model power curve in Ref. [3]. Neural network (NN)
models are suitable for modeling WTPCs. Three different NNs, the
generalized mapping regression (GMR), multi-layer perceptron
(MLP), and general regression neural-network (GRNN) were
applied to model WTPCs in Ref. [13]. Furthermore, fuzzy cluster
center method, fuzzy c-means clustering, and subtractive
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clustering were used in Refs. [8,14] to model WTPCs. Since super-
visory control and data acquisition (SCADA) systems collect large
volumes of data, datamining algorithmswere used tomodel power
curves in Ref. [5].

In summary, parametric models have limitations in expressing
dynamic characteristics of power curves [15], for example, at the
area between two partitions. Non-parametric models are more
accurate [16], however, they may come at higher computation and
training cost. Development of a dynamics power curves at a low
computational cost calls for a new approach. An approach to model
power curve with cluster centers proposed in Ref. [17] reduced the
computational cost. In this paper the partition centers are used as
training examples to build a power curve model with the support
vector machine (SVM) algorithm.

The paper is organized in three sections. In Section 2, the wind
turbine power curve (WTPC) and a framework of the proposed
method is presented. Section 3 discusses the data from an oper-
ating wind farm and the necessary data processing. Section 4 fo-
cuses on computation of partition centers and selection of a data
mining algorithm. In Section 5, the proposed method is applied to
the industrial data. Performance of the proposed model is also
discussed. Section 6 concludes the paper.
2. The proposed approach

Awind turbine power curve (WTPC) model includes three main
points: A, B, C (see Fig. 1). Point A represents the cut-in wind speed,
point B reflects the rated power, and point C corresponding to the
cut-out speed.

These three points divide power curve into four segments [18],
each having a different distribution of wind power and wind speed.
When the wind speed v<vA or v>vC, wind power output is zero. In
segment BC, the wind power output reaches the rated level. The
theoretical performance of a wind turbine in segment AB is
expressed in equation (1).

P ¼ 1
2
CprpR2v3 (1)

where: Cp is thewind turbine power coefficient; r represents the air
density; R is the radius of wind rotor, and v represents the wind
speed.

As different segments of a power curve have different proper-
ties, segmented models are used, e.g., models composed of three
Fig. 1. An abstract power curve.
and four segments were built in Ref. [19] (see Fig.1). However, some
points could not be well represented due to non-smoothness at a
juncture of segments. Non-parametric models offer flexibility in
dynamic models of power curves, but may come at a significant
computational cost. The approach proposed in this paper allows to
build a dynamic WPTC model at a low computational cost.

A framework of modeling wind turbine power curves is pre-
sented in Fig. 2. The published research (the blue dashed box at the
left in Fig. 2) and the proposed one (the red dashed box at the right)
are compared. First, the original wind data is preprocessed to
eliminate abnormal data values. The approaches published in the
literature favor use of segmented and non-parametric models. In
this paper, the data is divided into equal size partitions. The cen-
troids of the partitions serve as new data points. Based on the new
data points, a dynamic WTPC is built by a support vector machine
(SVM) algorithm. The power curve model is applied to assess per-
formance of wind turbines.
3. Data source and preprocessing

The data (wind power andwind speed) used in this paper comes
from a large wind farm located in the Midwest. The data set was
collected at turbine at a sampling interval of 10 min. In total 57,025
data points were collected from June 1, 2014 to July 1, 2015. The unit
of the active wind power is kW, and the value of power is
normalized for air density of 1.18 kg/m3.

Fig. 3 illustrates the power curve constructed from the industrial
data. The black points are generally used to train the wind turbine
power curve (WTPC). The red data points are defined in Ref. [20] as
under-power points or stopping points pointing to abnormal
behavior of a turbine. To reduce the modeling error, the under-the-
power curve points are rejected at the pre-processing phase.

Assuming a wind power series {xn}, the mean x and standard
deviation s are applied to determine abnormal values. The wind
data may not be stationary at some periods due to wind speed
fluctuation. Therefore, x is computed step-by-step based on expo-
nential smoothing [21] according to equation (2).

xt ¼ axt þ ð1� aÞxt�1 (2)

where: xt represents the computed mean at the tth step; a is the
weight parameter; and x0 is chosen as x0;. Based on equation (2),
Fig. 2. A framework of the proposed modeling approach.



Fig. 3. Power curve of an industrial wind turbine.

Fig. 4. Wind speed intervals, data partitions, and center points.
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the normal values are determined with equation (3), while the
remaining vales are labeled abnormal.

xt�1 � ks< xt < xt�1 þ ks (3)

where: k is a parameter determined from statistical analysis of
small probability events. Given the values of k and a, the abnormal
values are detected, and then deleted or revised. In this paper, the
values of parameters are chosen as a ¼ 0.2 and k ¼ 3, and the red
points representing the abnormal values in Fig. 3 are deleted.

4. Wind turbine power curve modeling

The proposed modeling approach (Fig. 2) includes extraction of
centroids and construction of a power curve model with a data-
mining algorithm. The preprocessed data is first partitioned, and
a data-mining algorithm is selected to build a dynamic WTPC.

4.1. Selecting partition centers

As illustrated in Fig. 2, the wind speed range is discretized into
intervals, and the corresponding wind speed and power data make
the partitions. Assuming the cut-out speed is vco, the speed range
[0, vco] is divided into N equal length intervals. The data points in
each interval are defined in equation (4).

Si ¼ fðv;pÞjv � vi; v � vi�1g (4)

where: Si represents the points set of the ith partition, v represents
wind speed and p is the corresponding power, and vi ¼ i

n*vco is the
demarcation speed between the ith and (iþ1)th partition.

The set of points in partition i is denoted as {xi}. Based on the k-
means algorithm, the center of {xi} is determined from equation
(5)e(6).

cðt þ 1Þ ¼ cðtÞ � hðtÞ*ðcðtÞ � xiÞ (5)

hðtÞ ¼ 1=ðt þ 1Þ (6)

where: c(t) represents the center point at the tth step, h(t) is a
coefficient. The value of h(t) decreases with increasing t, i.e., more
data points are considered (see equation (6)). For t¼0, h(0) ¼ 1 and
c(1) ¼ x0, the initial partition center is randomly selected. Subse-
quently when t increases, a new point is computed and a new
partition center is selected according to equation (5)e(6). If t/∞,
the value of h is 0, which implies the partition center is determined.

Fig. 4 illustrates the wind speed partitions and centroids. All
center points resemble the shape of an abstract power curve and
they are used to model the WTPC.
4.2. Data mining modeling

A power curvemodel is a function f(x) capturing the relationship
between wind speed and wind power. In this paper, partition
centers are used to reducemodel complexity and computation cost.
The partition centers are defined as {cij ci¼(vi, pi), i¼1,2, …,N},
where N is the number of partitions, vi and pi are the value of wind
speed and wind power at the ith center, respectively. The WTPC
model is expressed in equation (7).

p ¼ f ðvÞ (7)

In parametric models, f in (7) is a mathematical expression,
while in non-parametric modeling, f is not explicitly expressed.
Data-mining algorithms are well suited for building non-
parametric models. Neural network (NN), random forest, support
vector machine (SVM), and k-nearest neighbor (k-NN) are
frequently used data mining algorithms [22,23]. A support vector
machine (SVM) algorithm utilizes support vectors to build the
classification hyper-plane. It is suitable for modeling from small
number of data points due to its strong generalization ability [24].
The SVM is applied to build a power curvemodel from the partition
centers.

SVM was originally used in linear classification of data in cate-
gories. It gradually evolved into a support vector regression (SVR)
algorithm [25]. Assume the training set is expressed in equation (8).

Tset ¼ fðx1; y1Þ; ðx2; y2Þ;/; ðxl; ylÞg2ðRn � YÞl (8)

where: xi is the input, yiεY is the output, i¼1,2, …, l, l is the number
of the training points, and Rn and Y are the value domain of x and y,
respectively. The SVR model is defined in equation (9)

f ðxÞ : y ¼ <u; x> þ b (9)

where: 〈x,y〉 represents the inner product of vector x and y, u and b
are the model parameters. To solve model equation (9), the prin-
ciple of structural risk minimization (SRM) [20] results in the
optimization model expressed in equation (10).



Table 1
Evaluation of models with three kernel functions.

MSE Std of MAE

Polynomial 125.05 144.34
RBF 44.849 54.454
Spline 15.98 9.88

Fig. 6. The flow chart of the proposed modeling approach.
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min
u;b

1
2
kuk2þ C

Xl

i¼1

�
xi þ x*i

�

s:t:

f ðxiÞ � yi � εþ xi

yi � f ðxiÞ � εþ x*i

xi; x
*
i � 0; i ¼ 1;2;/; l

(10)

where: ε�0 is an insensitive loss factor whose function is to keep
the error between f(x) and y less than ε. To take the random error
into account, relaxation factors xi; x

*
i and penalty factor C are

introduced into the objective function of model equation (10).
However, in most cases the model is non-linear and complex. The
data is not expressed suitably by the linear model in equation (9),
rather kernel functions are used to map the data points into a high
dimension feature space [26], and the inner product 〈xi,xj〉 is often
replaced by the kernel function K(xi,xj).

In this paper, SVM is applied to build the power curve model
with partition centers. Thus, input x represents wind speed and
output y represents wind power, and Rn¼Y¼R. From the plot in
Fig. 1, it is obvious that the power curve is non-linear, therefore a
suitable kernel function needs to be selected. Performance of three
kernel functions, polynomial, radial basis function (RBF), spline, is
assessed in this paper. Fig. 5 illustrates the power curve models for
these kernel functions.

The mean square error (MAE) and the standard deviation of
mean absolute error (Std of MAE) are used to evaluate these three
models of Fig. 5 (see Table 1). It is obvious that the spline kernel
performs best, therefore it is considered in this paper for modeling.
The spline kernel is expressed as a piece-wise cubic polynomial
[27] in equation (11).

Kðx; yÞ ¼ 1þ xyþ xyminðx; yÞ � xþ y
2

minðx; yÞ2 þ 1
3
minðx; yÞ3

(11)

where: Kðx; yÞ represents the spline kernel function of vectors x and
y.
4.3. Algorithm flow

Fig. 6 present the flow chart of the proposed approach that is
outlined next:

Step 1: Preprocess the original data.
Step 2: Set the number of partitions to N, and decompose the

wind speed range into N partitions. The data set corresponding to
the ith partition is labeled Si.

Step 3: Extract the centroid data points {ci} of partitions as a new
data set, then SVM algorithms with different kernel functions to
build a WTPC.
Fig. 5. Performance of power curve models with different kernel functions.
Step 4: Judging the performance of modeling WTPC. Stop when
the model is satisfactory; otherwise, repeat from Step 2.

5. Results and discussion

5.1. Discussion of different models

The power curve model can be used to evaluate performance of
a wind turbine. The number of partition centers determines the
number of training data points. Assuming the number of partitions
N, then the partition centers ci, i¼1,2, …, N of each partition are
computed from equation (4)e(6). Using {ci} as the input variables,
the WTPC model is built with the SVM algorithm in equation
(8)e(10). Since different values of N may have different perfor-
mance inmodeling power curves, Fig. 7 illustrates performance and
computation time of models as the function of N.

The wind speed range of [0, 20] is selected in Fig. 7 for the data
from the industrial wind turbine (see Fig. 2). By increasing the
number of partitions in increments of 1, several models are built.
The green plot in Fig. 7 depicts the computation time of models
with different partitions. The trend of computation time is
increasing as more partitions are used in modeling. The blue plot
depicts the performance of models fitting the actual wind power
curve, the SSE (sum of square error) is used as the performance
function. Note that the SSE value drops first (See Fig. 7), then



Fig. 7. Performance and computation time of power curve models with different
number of partitions.

Fig. 8. The evaluation indicator F.

Fig. 9. Four power curve models
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remains approximately constant in increasing N, which implies that
it is feasible to find a reasonable number of partitions at low
computational cost. To find the optimal number of partitions, an
evaluation indicator synthesizing the two factors of Fig. 7 is defined
in equation (12).

F ¼ w1,p1 þw2,p2 (12)

where: F is the evaluation indicator; p1 and p2 represent the
normalized value of two factors (performance and computational
cost) respectively; w is the weight of a factor.

Fig. 8 shows the values of F for different numbers of partitions.
Given theweightsw1¼w2¼ 0.5, the optimal value of F is 16 and 20,
which implies that 16 or 20 partitions are sufficient to obtain a high
performancemodel. Three illustrative power curvemodels with 10,
20, and 30 partitions are illustrated in Fig. 9(a)-9(c).

The green points in Fig. 9 are the actual wind data; the red
points represent the partition centers; the black curve represents
the power curve; and the yellow region represents the 95% confi-
dence zone. For comparison with the other models in Fig. 9, the
model in Fig. 9(d) is built without data partitioning (using all data
points). Most data points in Fig. 9 are located within the confidence
zone. Deviations off the black curve are regarded as the model er-
rors reflecting the wind power variability. There are some points
outside the confidence zone due to the model's accuracy. Then the
performance of a turbine is analyzed by combining all these factors.
Generally, the random nature of wind impacts the model errors.
The errors following the normal distribution are regarded as the
random and are not considered in performance evaluation.

Fig. 10 provides the distribution of the errors of the power
curves in Fig. 9. All errors follow a normal distribution, which im-
plies that these models are valid for modeling WTPCs. The pa-
rameters of error distribution are provided in Table 2.

In Table 2, m is the mean of error and s is the standard deviation
of error. Based on the results in Table 2, The model with 10 parti-
tions has the largest value of the mean error m, The model with all
data points has the largest value of the standard deviation s, which
for 10, 20, and 30 partitions.



Fig. 10. Error distribution of the four models in Fig. 9.

Table 2
Parameters of the error distribution functions.

10 partitions 20 partitions 30 partitions All data points

m 4.6789 �0.5109 0.5943 0.6790
s 38.7523 38.2582 38.5236 42.1251

Table 3
Error statistics of four models.

MAE RMSE R2

10 partitions 26.5166 39.0280 0.9912
20 partitions 24.7002 38.2558 0.9915
30 partitions 25.0804 38.5224 0.9914
All data points 30.6594 42.1242 0.9897
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implies that both models poorly model power curves. The model
with 20 partitions captures the best WTPC model. The results in
Table 2 indicates that a model built with all data points is inferior to
the model built at lower computational cost with a smaller number
of data points (the model with 20 partitions). The performance of
these models is further analyzed in the next section.

5.2. Quantitative assessment of model performance

Themean absolute error (MAE) and the root mean squared error
Table 4
The evaluation indicators of three different models.

SSE Computational time F

Model 1 7.93eþ06 0.8185 2.6064
Model 2 3.08eþ05 7.6098 6.4606
Model 3 3.01eþ05 1.0330 0.1482
(RMSE) are used frequently in quantitative evaluation of models
[28]. The two metrics presented in equation (13)e(14) will be used
to evaluate the performance of the models in Fig. 9.

MAE ¼ 1
n

Xn
i¼1

jpi � bpij (13)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðpi � bpiÞ2
vuut (14)

where: pi is the actual wind power and bpi is the predicted wind
power, and n is the number of test data points. In addition to
metrics equation (13)e(14), the coefficient of determination R2 in
equation (15) is used.

R2 ¼ 1�
Pn

i¼1 ðpi � bpiÞ2Pn
i¼1 ðpi � piÞ2

(15)

where: pi is the mean value of the actual power. Table 3 provides
the value of the three metrics for the four models.

The results in Table 3 show that models with 10, 20, 30 parti-
tions have smaller values of MAE and RMSE than model with all
data points, and their value of R2 closer to 1, which implies that
these models perform better than model with all data points. The
data in Tables 2 and 3 point to the model with 20 partitions as the
best performing. Therefore, it is used to evaluate performance of
the wind turbine studied in this paper. A computational study was
performed to compare the model built the approach presented in
this paper and with the models presented in the literature. Table 4
shows the values of three indicators for different models.

Model 1 is the segmentedmodel with three piecewise functions.
Model 2 is the non-parametric model built by SVM. Model 3 is built



Fig. 11. Results of wind power prediction for a test data set.
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using 20 partition centers. The segmented model dominates in the
computational time, but its performance (SSE) is low. Comparing
Model 2 with Model 3, a result similar to that of Table 3 is obtained.
The value of indicator F demonstrates that the proposed approach
prevails over the other two other models.
5.3. Performance evaluation of wind turbines

To evaluate performance of the wind turbine, Model 2 of Fig. 9 is
used, the data of July and August are chosen as the testing set. Then
power prediction results for two test data sets, July and August
2014, are shown in Fig. 11.

The red solid line in Fig. 11 indicates that predicted wind power
equals to the measured wind power. The red dashed lines represent
the confidence interval. Considering the fact that random errors
exist, a confidence interval is needed to describe the performance
of prediction. Fig. 10 and Table 2 analyze the error accord with the
normal distribution, equation (16) is considered to apply to almost
all of data.

ε2½m� ks;mþ ks� (16)

where: ε is the prediction error, k is the proportionality coefficient,
m and s are the mean and standard deviation of the error, respec-
tively. When the value of coefficient k¼1, 68.3% of errors conform to
equation (16). For k¼2 and 3, the probability values are 95.4% and
99.7% respectively. The two dotted lines in Fig. 11 represent the
lower and upper boundary of 99.7% confidence interval based on
the errors of Model 2. The results in Fig. 11(a) are for the month of
July 2014 with the precision of 98.39%. Fig. 11(b) shows the pre-
diction of wind power in August 2014 with the precision of 99.14%.
The above presented results demonstrate validity of the proposed
approach in performance evaluation of wind turbines.
6. Conclusion

In this paper, a model based on data partitioning and data
mining was proposed for modeling power curves of wind turbines.
Wind data from an industrial wind turbine was used in the study.
First, abnormal values of the data set were deleted. Twenty-five
data partitions (between 5 and 30) were considered and the cen-
ter points of these partitions were extracted. An evaluation indi-
cator Fwas defined to determine performance of power curves. The
number of partitions, 16 and 20, were found to deliver a power
curve at high performance and low computational cost. A support
vector machine algorithm with three kernel functions was used to
build power curvemodels. Themodel with 20 partitions performed
best. Its performance was compared with the models published in
the literature. The computational results demonstrated that there
exists a data partition granularity leading to good performing
model generated at a reasonable computational cost.
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